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Purposes of Modeling

Planning — to help design Frio brine pilot

Predictions — to assess state of understanding

Calibration — to improve understanding of the
multi-phase, multi-component flow processes
involved 1n geologic sequestration of CO,




Experiment Design Issues

Requirement

Controlling factors

Decision

Pressure increase
must be within
regulatory limits

 permeability
e outer boundary conditions
* CO, 1njection rate

e AP should be okay for
highest planned CO,
injection rate

CO, must arrive
at observation
well

e thickness of injection interval
e well separation
e amount of CO, injected

Drill new injection well
closer to observation well

Duration of field

test must be
affordable

e thickness of injection interval
e well separation
* CO, injection rate

eInject into C sand above
thin marker bed
*Highest CO, injection rate

CO, must be
monitored in
subsurface

e amount of CO, injected
* in situ phase/component
conditions

Downhole P, T
*VSP
*Cross-well seismic
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Numerical Stmulator TOUGH?2

General-purpose simulator for flow and transport through
porous or fractured rock

multi-component

multi-phase

heat flow

tracer transport

Equation of state: CO,, H,O, NaCl, ideal tracer
Accurate phase partitioning and thermophysical properties
CO,: liquid, gas, supercritical, dissolved
H,O: liquid, gas
NaCl: dissolved, precipitate
Integral-finite difference method for flexible space discretization

Fully implicit, fully coupled time-stepping




Key Physical Processes

Flow equations: multi-phase Darcy’s Law for phase 3

kk
U5 :_Kﬁ(vpﬁ _Pﬁg) Ky = oL
Hp

Mobility Kj includes intrinsic permeability k, relative permeability
k, s density pg, and viscosity g
Driving forces

— Pressure gradient (including capillary pressure P

— Gravity
Key properties of supercritical CO, at Frio conditions (150 bars,
55°C)

— Low p and u compared to surrounding brine

— k5 and P, control phase interference between CO, and brine

cap)




Plan View and Model Boundaries

P No-flow boundary

® Well # Newwell

Structure contours
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3-D Grid Design

Plan view
CLOSED

North-South cross-section
of near-well area

CLOSED
CLOSED

Grid spacing
around wells:
AX=AYy=2m
AZ~1m

500 550 x (m) 600 650




Property Assignment
Well Logs and Core Analysis

— Grid-averaged permeability
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— Grid-averaged porosity
—— Porosity
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e Purposes of modeling

e Model development
e Model applications

— Estimation of relative permeability curves

e (Conclusions and future directions




Relative Permeability Function
Sticky or Slippery Plume?
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Modeled CO, Distribution




Site Characterization
Tracer-Test Arrival for Two C Sand Thicknesses
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Use Tracer-Test to Predict CO, Arrival

Tracer Test

CO, Injection

Impact on
CO, Arrival
Time

Flow field

Phase conditions
Density contrast
Viscosity contrast
Injection rate

Density in situ

Doublet
Single-phase
None

None

50 gpm
1060 kg/m?

Single well
Two-phase
1.5

12

40 gpm
~700 kg/m?

3 times slower
Faster

Faster

Faster

20% slower
50% ftaster

Arrival at observation
well

9 days
(peak 12 days)

WITHIN TWO
WEEKS???




Observed Data and Model Predictions
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RST — Reservoir Saturation Tool

RST Interpretation Model

- 2 days
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Figure provided by Shinichi Sakurai, TBEG 2 0406 08
RST logging conducted by Schlumberger




Conclusions and Future Directions

Developing good understanding of physical process involved in
CO, storage

—  modeling range of behaviors

—  comparing to field data

Complex interplay between phase interference and buoyancy
flow for CO, injection into a high-permeability, steeply dipping
sand layer

Prepared to design future tests and actual storage operations

Still to learn
—  Phase interference at field scale
—  Upscale from laboratory experiments
—  Dynamics of trailing edge of CO, plume




Site Characterization
Well-Test Design and Analysis

*Simulate well-test scenarios to design well-testing to
optimize information gained on

— flow properties

— 1n situ phase conditions (dissolved or immobile methane)

—  fault-block boundary conditions

*Simulate actual well-test and compare to observed data

— confirms high permeability values of core analysis

— suggests nearby small fault may be non-sealing (could enable
communication between C and B sands)
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Incremental Model Development

Data incorporated Model Application CO, Arrival
Time (days)

Regional Frio and Anahuac geology | CO, injection:
South Liberty oil-field data: B sand, wells 150 m apart
50-year-old well logs, 3D seismic C sand, wells 30 m apart

Large S, from Frio literature CO, injection

More geological structure CO, injection

New injection well logs CO, injection

Core analysis Well test

Well test Tracer test: t 9d

peak =
CO, injection

Tracer test Tracer test: t ., = 12d

CO, injection

CO, injection (t,, = 2.2 d) Long-term CO, plume
evolution






